What is the correct radical form of this expression #(32a^10b^(5/2))^(2/5)#?
1 Answer
Dec 12, 2016
Explanation:
First, rewrite
#(32a^10b^(5/2))^(2/5)=(2^5a^10b^(5/2))^(2/5)#
The exponent can be split up by multiplication, that is,
#(2^5a^10b^(5/2))^(2/5)=(2^5)^(2/5) * (a^10)^(2/5)*(b^(5/2))^(2/5)#
Each of these can be simplified using the rule
#(2^5)^(2/5) * (a^10)^(2/5) * (b^(5/2))^(2/5)=2^(5xx2/5) * a^(10xx2/5) * b^(5/2xx2/5)#
#color(white)((2^5)^(2/5) * (a^10)^(2/5) * (b^(5/2))^(2/5))=2^2 * a^4 * b^1#
#color(white)((2^5)^(2/5) * (a^10)^(2/5) * (b^(5/2))^(2/5))=4a^4b#