What is the cross product of #<0,8,5># and #<-1,-1,2>#?
1 Answer
Explanation:
We know that
So for of the unit vectors
#color(white)( (color(black){hati xx hati = vec0}, color(black){qquad hati xx hatj = hatk}, color(black){qquad hati xx hatk = -hatj}), (color(black){hatj xx hati = -hatk}, color(black){qquad hatj xx hatj = vec0}, color(black){qquad hatj xx hatk = hati}), (color(black){hatk xx hati = hatj}, color(black){qquad hatk xx hatj = -hati}, color(black){qquad hatk xx hatk = vec0}))#
Another thing that you should know is that cross product is distributive, which means
#vecA xx (vecB + vecC) = vecA xx vecB + vecA xx vecC# .
We are going to need all of these results for this question.
#<0,8,5> xx <-1,-1,2>#
#= (8hatj + 5hatk) xx (-hati - hatj + 2hatk)#
#= color(white)( (color(black){qquad 8hatj xx (-hati) + 8hatj xx (-hatj) + 8hatj xx 2hatk}), (color(black){+5hatk xx (-hati) + 5hatk xx (-hatj) + 5hatk xx 2hatk}) )#
#= color(white)( (color(black){8hatk - 8(vec0) + 16hati}), (color(black){-5hatj + 5hati qquad + 10(vec0)}) )#
#= 21hati - 5hatj + 8hatk#
#= <21,-5,8>#