What is the cross product of #(2i -3j + 4k)# and #(- 5 i + 4 j - 5 k)#?

1 Answer
Dec 11, 2015

I found: #-i-10j-7k#

Explanation:

Calling the two vectors #vecu and vecv# we can use the definition of Cross Product to get:
#vecuxxvecv=|(i,j,k),(u_x,u_y,u_z),(v_x,v_y,v_z)|=|(i,j,k),(2,-3,4),(-5,4,-5)|=# evaluating the Determinant:

#vecuxxvecv==-i-10j-7k#