What is the cross product of #<-3,4, 8 ># and #<2,-4, 1>#?

1 Answer
Mar 12, 2016

Answer:

#vec A X vecB=36hat i+19 hat j+4 hat k#

Explanation:

#vec A=A_x* hat i+A_j* hat j+A_k* hat k#
#vec B=B_x* hat i+B_j* hat j+B_k*hat k#
#"cross product of two vector is determined by:"#
#vec A X vec B=hat i(A_y*B_z-A_z*B_y)- hat j(A_x*B_z-A_z*B_x)+hat k(A_x*B_y-A_y*B_x)#
#vec A X vec B=hat i(4+32)-hat j(-3-16)+hat k(12-8)#
#vec A X vecB=36hat i+19 hat j+4 hat k#