What is the cross product of #<5, 2 ,5 ># and #<4 ,1 ,9 >#?

1 Answer
Jul 4, 2016

Answer:

#< 5, 2, 5 > xx < 4, 1, 9 > = < 13, -25, -3 >#

Explanation:

The cross product of two #3# dimensional vectors can be defined by the formula:

#< u_1, u_2, u_3 > xx < v_1, v_2, v_3 > = < abs((u_2, u_3),(v_2, v_3)), abs((u_3, u_1),(v_3, v_1)), abs((u_1,u_2),(v_1,v_2))>#

In our example we find:

#< 5, 2, 5 > xx < 4, 1, 9 >#

#= < abs((2,5),(1,9)), abs((5,5),(9,4)), abs((5,2),(4,1)) >#

#= < (18-5), (20-45), (5-8) >#

#= < 13, -25, -3 >#