What is the cross product of #<5, 2 , 8 ># and #<4 ,7 ,3 >#?

1 Answer
Feb 17, 2016

Answer:

#< -50, 17, 27 >

Explanation:

The cross product of 2 vectors can be calculated as
#< a_x, a_y, a_z > xx < b_x, b_y, b_z > = < c_x, x_y, c_z >#
where #{(c_x=a_yb_z-a_zb_y),(c_y=a_zb_x-a_xb_z),(c_z=a_xb_y-a_yb_x):}#

Therefore:
#< 5,2,8 > xx <4, 7,3 >#

#color(white)("XXX")= < (2xx3-8xx7), (8xx4-5xx3), (5xx7-2xx4) >#

#color(white)("XXX")= < -50, 17, 27 >#