What is #int_0^sqrt(3) (x-(arctanx)^4)/(1+x^2)#?

1 Answer
May 4, 2018

The integral equals #0.441# most nearly.

Explanation:

We have:

#I = int_0^sqrt(3) x/(1 + x^2) - arctan^4x/(x^2 + 1)dx#

#I = int_0^sqrt(3) x/(1 + x^2) - int_0^sqrt(3) arctan^4x/(x^2 + 1) dx#

We now let #u = arctanx#. Then #du = 1/(1 + x^2) dx# and #dx = (1 + x^2)du#.

#I = int_0^sqrt(3) x/(1+ x^2) - int_0^(pi/3) u^4 du#

For the first integral, let #t = x^2 + 1#. Then #dt = 2x dx# and #dx = (dt)/(2x)#.

#I = int_1^4 x/(2tx) dt - int_0^(pi/3) u^4 du#

#I = [1/2ln|t|]_1^4 - [1/5u^5]_0^(pi/3)#

#I = 1/2ln4 - 1/5(pi/3)^5#

#I = ln2 - pi^5/1215 ~~0.441#

Hopefully this helps!