What is the derivate for #2013root2013x# ?

1 Answer
Sep 8, 2017

#1/root2013(x^2012)#

Explanation:

Rewrite the radical using #rootnx=x^(1//n)#:

#2013root2013x=2013x^(1//2013)#

Now use the power rule: #d/dxx^n=nx^(n-1)#. Note that #1/2013-1=(-2012)/2013#

#d/dx2013x^(1//2013)=2013(1/2013)x^((-2012)/2013)#

#=1/x^(2012/2013)=1/root2013(x^2012)#