What is the derivative of #b^x# where b is a constant?
1 Answer
Jan 11, 2016
Explanation:
First, note that
#b^x=e^ln(b^x)=e^(xlnb)#
This allows us to differentiate the function using the chain rule:
#d/dx[e^(xlnb)]=e^(xlnb)*d/dx[xlnb]#
Just like
This gives us a derivative of:
#e^(xlnb)*lnb#
Now, recall that
#d/dx[b^x]=b^x*lnb#