What is the derivative of #f(x)=3sin^2x#?
1 Answer
Aug 17, 2016
Explanation:
differentiate using the
#color(blue)"chain rule"#
#color(red)(|bar(ul(color(white)(a/a)color(black)(dy/dx=(dy)/(du)xx(du)/(dx))color(white)(a/a)|)))........ (A)# let
#u=sinxrArr(du)/dx=cosx# note :
#sin^2x=(sinx)^2# so
#y=3u^2rArr(dy)/(du)=6u# substitute these values into (A) changing u back into terms of x.
#rArrdy/dx=6ucosx=6sinxcosx#
#color(orange)"Reminder " color(red)(|bar(ul(color(white)(a/a)color(black)(sin2x=2sinxcosx)color(white)(a/a)|)))#
#rArrdy/dx=6sinxcosx=3sin2x#