What is the derivative of #f(x) = (lnx)^(x)#?

1 Answer
Nov 12, 2015

#d/dx ln^x(x) = ln^x(x)(ln(ln(x))+1/ln(x))#

Explanation:

We will be using several techniques in the evaluation of this derivative.


The product rule:
#d/dxf(x)g(x) = f'(x)g(x) + f(x)g'(x)#

The chain rule:
#d/dxf(g(x)) = f'(g(x)g'(x)#

Implicit differentiation:
#d/dx f(y) = (df(y))/dydy/dx#

Derivative of the natural logarithm:
#d/dx ln(x) = 1/x#

(a property of logarithms)
#ln(x^n) = nln(x)#


Now, we proceed to evaluate the derivative.
Let #y = ln^x(x)#

#=> ln(y) = ln(ln^x(x)) = xln(ln(x))# (property of logarithms)

#=> d/dxln(y) = d/dxxln(ln(x))#

Through implicit differentiation and the derivative of natural log
#d/dxln(y) = d/dyln(y)dy/dx = 1/ydy/dx#

For the right hand side
#d/dxxln(ln(x)) = 1*ln(ln(x)) + x(d/dxln(ln(x)))# (product rule)
#d/dxln(ln(x)) = 1/(ln(x))*1/x = 1/(xln(x))# (chain rule)
#=> d/dxxln(ln(x)) =ln(ln(x)) + x/(xln(x))= ln(ln(x)) + 1/(ln(x))#

So we have

#1/ydy/dx = ln(ln(x)) + 1/(ln(x))#

Multiplying by #y# gives us

#dy/dx = y(ln(ln(x)) + 1/(ln(x)))#

Finally, we substitute back in for #y# to get

#d/dxln^x(x) = ln^x(x)(ln(ln(x)) + 1/(ln(x)))#