What is the derivative of #f(x)=tan(ln(cosx))#?

1 Answer
Nov 10, 2015

#dy/dx = -sec^2(ln(cos(x)))tan(x)#

Explanation:

So we have

#y = tan(ln(cos(x)))#

Let's say that #ln(cos(x)) = u#, so we have

#y = tan(u)#

#dy/dx = d/(du)tan(u)(du)/dx#
#dy/dx = sec^2(u)d/dx(ln(cos(x))#

Let's say that #cos(x) = v#, so we have

#dy/dx = sec^2(u)d/(dv)ln(v)(dv)/dx#
#dy/dx = sec^2(u)/vd/dxcos(x)#
#dy/dx = -(sec^2(u)sin(x))/v#

Putting everything in terms of #x#

#dy/dx = -sec^2(ln(cos(x)))sin(x)/cos(x)#
#dy/dx = -sec^2(ln(cos(x)))tan(x)#