# What is the derivative of  ln(3x)?

Then teach the underlying concepts
Don't copy without citing sources
preview
?

#### Explanation

Explain in detail...

#### Explanation:

I want someone to double check my answer

18
Oct 3, 2016

$\ln \left(3 x\right) = y$

${e}^{y} = 3 x$

Now use implicit differentiation. Remember that:

$\frac{\mathrm{dy}}{\mathrm{dy}} \cdot \frac{\mathrm{dy}}{\mathrm{dx}} = \frac{\mathrm{dy}}{\mathrm{dx}}$

If you use implicit differentiation...

${e}^{y} = 3 x$

Should transform into...

${e}^{y} \cdot \frac{\mathrm{dy}}{\mathrm{dx}} = 3$

Therefore:

$\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{3}{e} ^ y$

$\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{3}{3 x}$

$\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{1}{x}$

You could also differentiate it like this...

$y = \ln \left(3 x\right)$

$y = \ln \left(3\right) + \ln \left(x\right)$

*Because of logarithmic rules.

$\therefore \frac{\mathrm{dy}}{\mathrm{dx}} = \frac{1}{x}$

• 13 minutes ago
• 26 minutes ago
• 31 minutes ago
• 43 minutes ago
• 2 minutes ago
• 4 minutes ago
• 4 minutes ago
• 6 minutes ago
• 8 minutes ago
• 9 minutes ago
• 13 minutes ago
• 26 minutes ago
• 31 minutes ago
• 43 minutes ago