What is the derivative of #sin^2(lnx)#?

1 Answer
Dec 25, 2015

We'll need the chain rule here, which states that #(dy)/(dx)=(dy)/(du)(du)/(dv)(dv)/(dx)#

Explanation:

Renaming #u=sin(v)# and #v=lnx#, we can follow the rule. Let's derivate it step-by-step:

#(dy)/(du)=2u#

#(du)/(dv)=cosv#

#(dv)/(dx)=1/x#

Then:

#(dy)/(dx)=2ucosv(1/x)#

Substituting #u#:

#(dy)/(dx)=2sin(v)cos(v)(1/x)#

Substituting #v#:

#(dy)/(dx)=(2sin(lnx)cos(lnx))/x#