What is the derivative of # x^-1#?

1 Answer
Jul 29, 2015

You get: #-1/x^2#

Explanation:

You can use:
1] The Power Rule where the derivative of #x^n# is #nx^(n-1)# and get:
#y'=-1x^-2=-1/x^2#

2] The definition of derivative as:
#y'=lim_(h->0)(f(x+h)-f(x))/h#
so you get:
#y'=lim_(h->0)((x+h)^-1-(x)^-1)/h=#
but #x^-1=1/x#
so you get:
#y'=lim_(h->0)(1/(x+h)-1/(x))/h# rearranging:
#y'=lim_(h->0)[(x-x-h)/(x(x+h))]*1/h=#
#y'=lim_(h->0)[(cancel(x)cancel(-x)-cancel(h))/(x(x+h))]*1/cancel(h)=#
taking the limit:
#y'=-1/x^2#