What is the derivative of #(x^(2/3 ))(8-x)#?
1 Answer
Explanation:
Recall the following:
Finding the Derivative
#[(x^(2/3))(8-x)]'#
#=(x^(2/3))(color(red)(8-x))'+(color(purple)(x^(2/3)))'(8-x)#
#=(x^(2/3))(color(red)(8'-x'))+(color(purple)(x^(2/3)))'(8-x)#
#=(x^(2/3))(color(orange)0-color(blue)1)+(color(purple)(x^(2/3)))'(8-x)#
#=(x^(2/3))(0-1)+(2/3x^(-1/3))(8-x)#
#=-x^(2/3)+(2/(3x^(1/3)))(8-x)#
#=(2/(3root(3)(x)))(8-x)-x^(2/3)#
#=(16-2x)/(3root(3)(x))-x^(2/3)#
#=(16-2x)/(3root(3)(x))-(x^(2/3)(3root(3)(x)))/(3root(3)(x))#
#=(16-2x-x^(2/3)(3root(3)(x)))/(3root(3)(x))#
#=(16-2x-x^(2/3)(3x^(1/3)))/(3root(3)(x))#
#=(16-2x-3x)/(3root(3)(x))#
#=color(green)((16-5x)/(3root(3)(x)))#