The derivative is #5(x^4+3x^2-2)^{4} * (4x^3+6x)#.
Explanation:
The Chain Rule says #d/dx(f(g(x))) = f'(g(x)) * g'(x)#. For the function #(x^4+3x^2-2)^5#, use #f(x)=x^5# and #g(x)=x^4+3x^2-2#. Then #f'(x)=5x^4# and #g'(x)=4x^3+6x#. Therefore, #d/dx((x^4+3x^2-2)^5)=5(x^4+3x^2-2)^{4} * (4x^3+6x)#.