What is the derivative of #y=ln(1/x)#?
1 Answer
Jul 28, 2014
#y'=-1/x#
Full solution
#y=ln(1/x)# This can be solved in two different ways,
Explanation (I)
The simplest one is, using logarithm identity,
#log(1/x^y)=log(x^-y)=-ylog (x)# , similarly following for problem,
#y=-ln(x)#
#y'=-(ln(x))'#
#y'=-1/x#
Explanation (II)
Using Chain Rule,
#y'=(ln(1/x))'#
#y'=1/(1/x)*(-1/x^2)=-1/x#
#y'=-1/x#