What is the dot product of #<-4,0,-2 ># and #<3,-9,1>#?

1 Answer
Jun 1, 2018

Answer:

The answer is #=-14#

Explanation:

The dot product of #2# vectors

#vecx= < a,b,c >#

and

#vecy = < d,e,f >#

is

#vecx . vecy = < a,b, c> . < d, e, f > =ad+be+cf#

Therefore,

# < -4,0,-2 > . < 3, -9, 1> = (-4)*(3)+(0)*(-9)+(-2)*(1) #

#=-12+0-2#

#=-14#