What is the dot product of #<-8,1,2 > # and #<-2,5,-1 > #?

1 Answer
May 18, 2018

Answer:

The answer is #=19#

Explanation:

The dot product of #2# vectors

#vecx= < a,b,c >#

and

#vecy = < d,e,f >#

is

#vecx . vecy = < a,b, c> . < d, e, f > =ad+be+cf#

Therefore,

# < -8,1,2 > . < -2, 5, -1> = (-8)*(-2)+(1)*(5)+(2)*(-1) #

#=16+5-2#

#=19#