What is the equation of the line normal to # f(x)=sin(x/2+pi)# at # x=pi/3#?
1 Answer
The equation is
Explanation:
Start by finding the y-coordinate of tangency.
#f(pi/3) = sin((pi/3)/2 + pi)#
#f(pi/3) = sin(pi/6 + pi)#
#f(pi/3) = sin((7pi)/6)#
#f(pi/3) = -1/2#
Now we find the derivative of
The derivative therefore is
#dy/dx = dy/(du) * (du)/dx#
#dy/dx = cosu * 1/2#
#dy/dx = 1/2cos(x/2 + pi)#
We now find the slope of the tangent.
#dy/dx|_(x = pi/3) = 1/2cos((pi/3)/2 + pi)#
#dy/dx|_(x = pi/3) = 1/2cos((7pi)/6)#
#dy/dx|_(x = pi/3) = 1/2(-sqrt(3)/2)#
#dy/dx|_(x= pi/3) = -sqrt(3)/4#
We now have all the information we need to find the equation of the line.
#y - y_1 = m(x- x_1)#
#y - (-1/2) = -sqrt(3)/4(x - pi/3)#
#y + 1/2 = -sqrt(3)/4x + (sqrt(3)pi)/12#
#y = -sqrt(3)/4x + (sqrt(3)pi - 6)/12#
Hopefully this helps!