# What is the equation of the line passing through (60,16) and (18,26)?

Jun 7, 2018

$\left(y - 16\right) = - \frac{5}{21} \left(x - 60\right)$

#### Explanation:

First you determine the slope:

$\left(\textcolor{b l u e}{{x}_{1}} , \textcolor{b l u e}{{y}_{1}}\right) = \left(60 , 16\right)$

$\left(\textcolor{red}{{x}_{2}} , \textcolor{red}{{y}_{2}}\right) = \left(18 , 26\right)$

$\textcolor{g r e e n}{m} = \frac{\textcolor{red}{{y}_{2}} - \textcolor{b l u e}{{y}_{1}}}{\textcolor{red}{{x}_{2}} - \textcolor{b l u e}{{x}_{1}}}$

$\textcolor{g r e e n}{m} = \frac{\textcolor{red}{26} - \textcolor{b l u e}{16}}{\textcolor{red}{18} - \textcolor{b l u e}{60}} = - \frac{5}{21}$

Now use the Point Slope form of a line:

$\left(y - \textcolor{b l u e}{{y}_{1}}\right) = \textcolor{g r e e n}{m} \left(x - \textcolor{b l u e}{{x}_{1}}\right)$

$\left(y - \textcolor{b l u e}{16}\right) = \textcolor{g r e e n}{- \frac{5}{21}} \left(x - \textcolor{b l u e}{60}\right)$

graph{(y-16) = -5/21(x-60) [-67, 93, -0.96, 79.04]}