What is the equation of the line tangent to #f(x)=-x^2 + 7x - 1 # at #x=-1#?
1 Answer
Oct 21, 2016
Explanation:
The equation of the tangent in
#color(blue)"point-slope form"# is.
#color(red)(bar(ul(|color(white)(2/2)color(black)(y-y_1=m(x-x_1))color(white)(2/2)|)))#
where m represents the slope and# (x_1,y_1)" a point on the line"# We require to find m and
# (x_1,y_1)# Given f(x) then
#f'(a)=m_"tgt"# where a is the x-coordinate of a point on f(x).
#rArrf'(x)=-2x+7# and
#f'(-1)=-2(-1)+7=9=m_"tgt"# Substitute x = - 1 into f(x) to obtain coordinates of point on tangent.
#f(-1)=-(-1)^2+7(-1)-1=-9# Using
#m=9" and " (x_1,y_1)=(-1,-9)#
#y+9=9(x+1)rArry+9=9x+9#
#rArry=9x" is the equation of the tangent"#