What is the equation of the tangent line of #f(x) =sinx/cosx-cotx# at #x=pi/4#?

1 Answer
Nov 13, 2016

The equation is #y = 4x - pi#.

Explanation:

Start by finding the point #(x, y)# where the function meets the tangent.

#f(pi/4) = sin(pi/4)/cos(pi/4) - cot(pi/4)#

#f(pi/4) = sin(pi/4)/cos(pi/4) - cos(pi/4)/sin(pi/4)#

#f(pi/4) = (1/sqrt(2))/(1/sqrt(2)) - (1/sqrt(2))/(1/sqrt(2))#

#f(pi/4) = 1/sqrt(2) xx sqrt(2)/1 - 1/sqrt(2) xx sqrt(2)/1#

#f(pi/4) = 1 - 1#

#f(pi/4) = 0#

We now differentiate the function.

#f(x) = sinx/cosx - cosx/sinx#

#f'(x) = (cosx xx cosx - (sinx xx -sinx))/(cosx)^2 - (-sinx xx sinx - (cosx xx cosx))/(sinx)^2#

#f'(x) = (cos^2x + sin^2x)/cos^2x - (-cos^2x - sin^2x)/sin^2x#

#f'(x) = 1/cos^2x - (-(cos^2x + sin^2x))/sin^2x #

#f'(x) = sec^2x + csc^2x#

Now, the slope of the tangent can be found by evaluating #x = a# within the derivative.

#f'(pi/4) = sec^2(pi/4) + csc^2(pi4)#

#f'(pi/4) = 1/cos^2(pi/4) + 1/sin^2(pi/4)#

#f'(pi/4) = 1/((1/sqrt(2))^2) + 1/(1/sqrt(2))^2#

#f'(pi/4) = 1/(1/2) + 1/(1/2)#

#f'(pi/4) = 2 + 2#

#f'(pi/4) = 4#

We now know the point of contact and the slope, so we can find the equation of the tangent line.

#y - y_ 1= m(x- x_1)#

#y - 0 = 4(x - pi/4)#

#y - 0 = 4x - pi#

#y = 4x - pi#

Hopefully this helps!