What is the equation of the tangent line of #f(x) =x-(ln(2x))^2# at # x = 3/2#?

1 Answer
May 26, 2017

#3y=(3-4ln3)x+3ln3(2-ln3)#

Explanation:

In order to find the equation of the tangent, we first need to find its gradient. We can do this be differentiating #f(x)# and evaluating the derivative at the point where the tangent touches the curve.

#f(x)=x-ln^2(2x)#

#f'(x)=1-(2ln2x)/x#

#f'(3/2)=1-(2ln3)/(3/2)=1-(4ln3)/3#

#thereforem=1-(4ln3)/3#

#f(3/2)=3/2-ln^2(3)#

#y-(3/2-ln^2 (3))=(1-(4ln3)/3)(x-3/2)#

#y-(3/2-ln^2 (3))=(1-(4ln3)/3)x+3/2((4ln3)/3-1)#

#y=(1-(4ln3)/3)x+2ln3-3/2+3/2-ln^2(3)#

#y=(3-4ln3)/3x+ln3(2-ln3)#

#3y=(3-4ln3)x+3ln3(2-ln3)#