What is the exact value of #\sin \frac { 13\pi } { 8} | #?

1 Answer
Jul 30, 2017

#sqrt(2 - sqrt2)/2#

Explanation:

#sin ((13pi)/8) = sin ((-3pi)/8 + (16pi)/8) = sin ((-3pi)/8 + pi) =#
#= - sin ((-3pi)/8) = sin ((3pi)/8)#.
Find #sin ((3pi)/8)# by using the trig identity:
#2sin^2 a = 1 - cos 2a#.
In this case:
#2sin^2 ((3pi)/8) = 1 - cos ((3pi)/4) = 1 - sqrt2/2 = (2 - sqrt2)/2#
#sin^2 ((3pi)/8) = (2 - sqrt2)/4#
#sin ((3pi)/8) = +- sqrt(2 - sqrt2)/2#
Since the arc #(3pi)/8# is in Quadrant 1, its sin is positive. Take the positive value.