What is the instantaneous rate of change at #x = 2# of the function given by #f(x)= (x^2-2)/(x-1)#?

2 Answers
Mar 25, 2015

Let #g(x) = x^2 - 1# and #h(x) = x-1#
so #f(x) = g(x)/(h(x))#

By the quotient rule for derivatives
#f'(x) = (g'(x)*h(x) - g(x)*h'(x))/(h(x))^2#

#g'(x) = 2x#
#h'(x) = 1#

So,
#f'(x) = (((2x)(x-1)) - (x^2-2)(1))/(x-1)^2#

#= (x^2 - 2x + 2)/(x-1)^2#

The instantaneous rate of change at #x=2# is therefore

#= ((2)^2 - 2(2) + 1)/((2)-1)^2#

#= 2/1=2#

Mar 25, 2015

What is the instantaneous rate of change at #x = 2# of the function given by #f(x)= (x^2-2)/(x-1)#?

Using the definition:

#lim_(xrarr2)(f(x)-f(2))/(x-2)#

#=lim_(xrarr2)((x^2-2)/(x-1)-(2^2-2)/(2-1))/(x-2)#

#=lim_(xrarr2)((x^2-2)/(x-1)-2)/(x-2)#

#=lim_(xrarr2)(((x^2-2)/(x-1)-2))/((x-2)) ((x-1))/((x-1))#

#=lim_(xrarr2)((x^2-2)-2(x-1))/((x-2)(x-1)#

#=lim_(xrarr2)(x^2-2-2x+2)/((x-2)(x-1)#

#=lim_(xrarr2)(x^2-2x)/((x-2)(x-1)#

#=lim_(xrarr2)(x(x-2))/((x-2)(x-1)#

#=lim_(xrarr2)x/(x-1)#

#=2/(2-1)=2#