What is the instantaneous rate of change of #f(x)=(x^2-3x)e^(x-1) # at #x=0 #?
1 Answer
Aug 1, 2016
Explanation:
The
#color(blue)"instantaneous rate of change"# is the value of f'(0)differentiate f(x) using the
#color(blue)"product rule"#
#color(red)(|bar(ul(color(white)(a/a)color(black)(f(x)=g(x)h(x)rArrf'(x)=g(x)h'(x)+h(x)g'(x))color(white)(a/a)|)))# here
#g(x)=(x^2-3x)rArrg'(x)=2x-3# and
#h(x)=e^(x-1)rArrh'(x)=e^(x-1).d/dx(x-1)=e^(x-1)#
#color(blue)"----------------------------------------------------------------------"#
#rArrf'(x)=(x^2-3x)e^(x-1)+e^(x-1).(2x-3)#
#=e^(x-1)(x^2-3x+2x-3)=e^(x-1)(x^2-x-3)#
#color(blue)"-------------------------------------------------------------------"#
#rArrf'(0)=e^(0-1)(0-0-3)=-3e^-1=-3/e#