What is the instantaneous velocity of an object moving in accordance to # f(t)= (tsin(2t-pi/2),cost) # at # t=(5pi)/4 #?

1 Answer
Feb 25, 2017

An object whose position is given by the parametric equation #f(t)=(x(t),y(t))# has a velocity of #v(t)=f'(t)=(x'(t),y'(t))#.

Here #x(t)=tsin(2t-pi/2)# so:

#x'(t)=(d/dtt)sin(2t-pi/2)+t(d/dtsin(2t-pi/2))#

#color(white)(x'(t))=sin(2t-pi/2)+tcos(2t-pi/2)(d/dt(2t-pi/2))#

#color(white)(x'(t))=sin(2t-pi/2)+2tcos(2t-pi/2)#

And #y(t)=cost# so

#y'(t)=-sint#

We find that #v((5pi)/4)=(x'((5pi)/4),y'((5pi)/4))#:

#x'((5pi)/4)=sin((5pi)/2-pi/2)+(5pi)/2cos((5pi)/2-pi/2)#

#color(white)(x'((5pi)/4))=sin(2pi)+(5pi)/2cos(2pi)#

#color(white)(x'((5pi)/4))=(5pi)/2#

And

#y'((5pi)/4)=-sin((5pi)/4)#

#color(white)(y'((5pi)/4))=1/sqrt2#

So the velocity vector at #t=(5pi)/4# is #v'((5pi)/4)=((5pi)/2,1/sqrt2)#.

The magnitude of the velocity (the speed) is given by #sqrt((x'((5pi)/4))^2+(y'((5pi)/4))^2)#, or:

#=sqrt((25pi^2)/4+1/2)=1/2sqrt(25pi^2+2)#