What is the integral of #cos^4(x/2)#?

1 Answer
Oct 21, 2016

#1/16sin(2x)+1/2sin(x)+3/8x+C#

Explanation:

#I=intcos^4(x/2)#

We will use the cosine double-angle formula to rewrite this. The identity tells us that: #cos(2x)=2cos^2(x)-1#, which can me modified to say that #cos(x)=2cos^2(x/2)-1#. Solving for #cos^2(x/2)# yields #cos^2(x/2)=1/2(cos(x)+1)#. Squaring both sides yields #cos^4(x/2)=1/4(cos(x)+1)^2=1/4(cos^2(x)+2cos(x)+1)#.

#I=1/4int(cos^2(x)+2cos(x)+1)dx#

#I=1/4intcos^2(x)dx+1/2intcos(x)dx+1/4intdx#

The final two can be integrated easily:

#I=1/4intcos^2(x)dx+1/2sin(x)+1/4x#

The first integrand can be rewritten using the same formula as before: since #cos(2x)=2cos^2(x)-1#, we see that #cos^2(x)=1/2(cos(2x)+1)#. Thus:

#I=1/4int1/2(cos(2x)+1)dx+1/2sin(x)+1/4x#

#I=1/8intcos(2x)+1/8intdx+1/2sin(x)+1/4x#

#I=1/16sin(2x)+1/8x+1/2sin(x)+1/4x+C#

#I=1/16sin(2x)+1/2sin(x)+3/8x+C#