What is the integral of #( cos x +sec x )^2#?
1 Answer
Aug 1, 2016
Explanation:
Note that
Thus, we have:
#intcos^2xdx+2intdx+intsec^2dx#
The last two are common integrals:
#=intcos^2xdx+2x+tanx#
For the remaining integral, use the following identity:
#cos(2x)=2cos^2x-1" "=>" "cos^2x=(cos(2x)+1)/2#
Thus the integral equals:
#=1/2intcos(2x)dx+1/2intdx+2x+tanx#
#=1/2intcos(2x)dx+1/2x+2x+tanx#
#=1/2intcos(2x)dx+5/2x+tanx#
For the first integral, let
#=1/4int2cos(2x)dx+5/2x+tanx#
#=1/4intcos(u)du+5/2x+tanx#
#=1/4sin(u)+5/2x+tanx+C#
#=1/4sin(2x)+5/2x+tanx+C#