What is the integral of #cos(x) / sqrt(1+sin^2(x)#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Ratnaker Mehta Jul 11, 2016 #ln|sinx+sqrt(1+sin^2x)|+C.# Explanation: Let #I=int{cosx/sqrt(1+sin^2x)}dx# Substitute #sinx = t,# so that, #cosxdx=dt.# Hence, #I=int1/sqrt(1+t^2)dt=ln|t+sqrt(1+t^2|#, or, #I=ln|sinx+sqrt(1+sin^2x)|+C.# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 9602 views around the world You can reuse this answer Creative Commons License