Write the integrand as:
#cos^6x = cos^5x * cosx #
So:
#int cos^6x dx = int cos^5x * cosx dx#
Integrate by parts:
#int cos^6x dx = int cos^5x d/dx (sinx) dx#
#int cos^6x dx = cos^5x sinx - int sinx d/dx (cos^5x) dx#
#int cos^6x dx = cos^5x sinx + 5 int sin^2x cos^4x dx#
Use now the identity: #sin^2x = 1-cos^2x#
#int cos^6x dx = cos^5x sinx + 5 int ( 1-cos^2x) cos^4x dx#
using the linearity of the integral:
#int cos^6x dx = cos^5x sinx + 5 int cos^4x dx - 5intcos^6x dx#
The integral now appears on both sides of the equation:
#6 int cos^6x dx = cos^5x sinx + 5 int cos^4x dx #
# int cos^6x dx = ( cos^5x sinx )/6 + 5/6 int cos^4x dx #
Using the same method we can find that:
# int cos^4x dx = ( cos^3x sinx )/4 + 3/4 int cos^2x dx #
# int cos^2x dx = ( cosx sinx )/2 + 1/2 int dx = (cosxsinx+x)/2+C#
Putting together the partial results:
# int cos^6x dx = ( cos^5x sinx )/6 + 5/24 ( cos^3x sinx ) +15/48(cosxsinx+x)+C#
and simplifying:
# int cos^6x dx = ( 8cos^5x sinx +10 cos^3x sinx +15cosxsinx+15x)/48+C#