What is the integral of #int 1/(x^(3/2) + x^(1/2)) dx#?

1 Answer
Aug 19, 2016

#2arctan(x^(1/2))+C#

Explanation:

We have:

#I=int1/(x^(3/2)+x^(1/2))dx#

Factor the denominator.

#I=int1/(x^(1/2)(x+1))dx#

Which can be rewritten as:

#I=intx^(-1/2)/(x+1)dx#

#I=intx^(-1/2)/((x^(1/2))^2+1)dx#

Now, let #u=x^(1/2)#. Thus, #du=1/2x^(-1/2)dx#.

#I=2int(1/2x^(-1/2))/((x^(1/2))^2+1)dx#

Substituting:

#I=2int1/(u^2+1)du#

This is the arctangent integral:

#I=2arctan(u)+C#

#I=2arctan(x^(1/2))+C#