What is the integral of #int cot^2(x)secxdx#?
1 Answer
Mar 17, 2016
Explanation:
Using the definitions of
#intcot^2xsecxdx=int(cos^2x/sin^2x)(1/cosx)dx#
#=intcosx/sin^2xdx=intcosx/sinx(1/sinx)dx#
#=intcotxcscxdx#
This is a common integral that equals
#=-cscx+C#
Another method we could have used was to use substitution at
If
#intcosx/sin^2xdx=int1/u^2du=intu^-2du#
Then, through the rule
#intu^ndu=u^(n+1)/(n+1)+C#
We obtain
#intu^-2du=u^-1/(-1)+C=-1/u+C#
#=-1/sinx+C=-cscx+C#