What is the integral of #int sin^4(x) dx#?
1 Answer
Explanation:
This integral is mostly about clever rewriting of your functions. As a rule of thumb, if the power is even, we use the double angle formula. The double angle formula says:
If we split up our integral like this,
We can use the double angle formula twice:
Both parts are the same, so we can just put it as a square:
Expanding, we get:
We can then use the other double angle formula
to rewrite the last term as follows:
I will call the left integral in the parenthesis Integral 1, and the right on Integral 2.
Integral 1
Looking at the integral, we have the derivative of the inside,
If we let
Integral 2
It's not as obvious here, but we can also use u-substitution here. We can let
Completing the original integral
Now that we know Integral 1 and Integral 2, we can plug them back into our original expression to get the final answer: