What is the integral of #int tan^5(x)*sec^4(x)dx#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Eddie Jul 5, 2016 #= 1/8tan^8(x) + 1/6tan^6(x) + C# Explanation: #int dx qquad tan^5(x)*sec^4(x)# #= int dx qquad tan^5(x)*color{red}{sec^2(x)}*sec^2(x)# using well known identity.... #= int dx qquad tan^5(x)*color{red}{(tan^2(x) + 1)}*sec^2(x)# #= int dx qquad (tan^7(x) + tan^5(x))*sec^2(x)# #= int dx qquad tan^7(x)*sec^2(x) + tan^5(x)*sec^2(x)# #= 1/8tan^8(x) + 1/6tan^6(x) + C# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 17505 views around the world You can reuse this answer Creative Commons License