What is the integral of #int tan^6(x)sec^6(x)#?
1 Answer
Explanation:
We will want to approach this so as to leave a
#inttan^6(x)sec^6(x)dx#
#=inttan^6(x)sec^4(x)sec^2(x)dx#
#=inttan^6(x)(sec^2(x))^2sec^2(x)dx#
#=inttan^6(x)(1+tan^2(x))^2sec^2(x)dx#
#=inttan^6(x)(1+2tan^2(x)+tan^4(x))sec^2(x)dx#
#=int(tan^10(x)+2tan^8(x)+tan^6(x))sec^2(x)dx#
Now, let
Substituting, we see that
#=int(u^10+2u^8+u^6)du#
Integrating term by term, this gives
#=u^11/11+(2u^9)/9+u^7/7+C#
Since
#=tan^11(x)/11+(2tan^9(x))/9+tan^7(x)/7+C#