Let, #I=intx^(1/3)/(x^(1/3)+x^(1/4))dx#.
To remove the radicals, subst. #x=y^12. :. dx=12y^11dy#.
#:. I=inty^4/(y^4+y^3)*12y^11dy#,
#:. I=12inty^12/(y+1)dy............(ast)#.
Now, consider the sum of first #12# terms of the following
geometric series having the #1^(st)# term #1# and common ratio #(-r) :#
#:. 1-r+r^2-r^3+...-r^11=[1*{(-r)^12-1}]/{(-r)-1}, i.e., #
#(r^12-1)/(r+1)=r^11-r^10+r^9-r^8+...+r-1#.
Utilising this, we find,
#y^12/(y+1)={(y^12-1)+1}/(y+1)=(y^12-1)/(y+1)+1/(y+1)#,
#=y^11-y^10+y^9-y^8+...+y-1+1/(y-1)#.
#:. I=12int{y^11-y^10+y^9-y^8+...+y-1+1/(y-1)}dy#,
#=12{y^12/12-y^11/11+y^10/10-y^9/9+...+y^2/2-y+ln|(y-1)|}+c#,
where, #y=x^(1/12)#.