What is the integral of #ln(sqrt(x))#?

1 Answer
May 2, 2015

By part :

#intln(sqrt(x))dx#

#du = 1#
#u = x#

#v = ln(sqrt(x))#
#dv = 1/(2x)#

#[xln(sqrt(x))]-1/2intdx#

#[xln(sqrt(x))-1/2x]#

don't forget #ln(a^b) = bln(a)#

#[1/2xln(x)-1/2x]#

factorize by #1/2x# and don't forget the constant !

#[1/2x(ln(x)-1)+C]#