What is the integral of #ln(sqrt(x))#? Calculus Introduction to Integration Integrals of Exponential Functions 1 Answer Tom May 2, 2015 By part : #intln(sqrt(x))dx# #du = 1# #u = x# #v = ln(sqrt(x))# #dv = 1/(2x)# #[xln(sqrt(x))]-1/2intdx# #[xln(sqrt(x))-1/2x]# don't forget #ln(a^b) = bln(a)# #[1/2xln(x)-1/2x]# factorize by #1/2x# and don't forget the constant ! #[1/2x(ln(x)-1)+C]# Answer link Related questions How do you evaluate the integral #inte^(4x) dx#? How do you evaluate the integral #inte^(-x) dx#? How do you evaluate the integral #int3^(x) dx#? How do you evaluate the integral #int3e^(x)-5e^(2x) dx#? How do you evaluate the integral #int10^(-x) dx#? What is the integral of #e^(x^3)#? What is the integral of #e^(0.5x)#? What is the integral of #e^(2x)#? What is the integral of #e^(7x)#? What is the integral of #2e^(2x)#? See all questions in Integrals of Exponential Functions Impact of this question 30968 views around the world You can reuse this answer Creative Commons License