What is the integral of #sin^4(x) * cos^2(x)#?

1 Answer
Dec 24, 2016

#intsin^4(x)*cos^2(x)=x/16-sin(4x)/64-sin^3(2x)/48+C#

Explanation:

This integral is pretty tricky. It's going to require the use of a few trigonometric identities and rules for integration. I'll include definitions or explanations of the rules used at the very end in the case that you would find this helpful.

I would begin by using half-angle identities:

#sin^2(theta)=1/2(1-cos(2theta))#

#cos^2(theta)=1/2(1+cos(2theta))#

Note that these are not the original half-angle identities, but the originals have been manipulated to produce these. I will show that at the end if you are interested.

#intsin^4(x)*cos^2(x)dx#

#=>int(1/2(1-cos(2x))*1/2(1-cos(2x))*1/2(1+cos(2x)))dx#

Factor out #1/8# and multiply out:

#=>1/8int(cos^2(2x)-2cos(2x)+1)(1+cos(2x))dx#

#=>1/8int(color(green)(cos^2(2x))color(red)(-2cos(2x))+1+cos^3(2x)color(green)(-2cos^2(2x))+color(red)(cos(2x))dx#

Combine like terms:

#=>1/8int(-cos(2x)+1+cos^3(2x)-cos^2(2x))dx#

#=> 1/8int(cos^3(2x)-cos^2(2x)-cos(2x)+1)dx#

We can use the sum rule to rewrite as

#=>1/8int(cos^3(2x))dx-1/8int(cos^2(2x))dx-1/8int(cos(2x))dx+1/8int(1)dx#

The last integral, #1/8int(1)dx# can be easily taken care of without any further manipulation.

#1/8int1dx=>1/8x#

Note: I will leave out adding the constant, #C# until the end.

#-1/8intcos(2x)dx# can also be taken care of fairly easily, this time with a simple #u# substitution.

#-1/8intcos(2x)dx#

#u=2x => du=2dx => 1/2du=dx#

#=>-1/8*1/2intcos(u)du#

#=>-1/16sin(u)#

#=>-1/16sin(2x)#

This leaves us with

#1/8int(cos^3(2x))dx-1/8int(cos^2(2x))dx#

We can use the half-angle identity for cosine again to work out the second integral after doing a #u# substitution. It isn't strictly necessary to do the substitution, but I'll show it to avoid any confusion.

#-1/8intcos^2(2x)dx#

#u=2x => du=2dx => 1/2du=dx#

#=>-1/8int1/2cos^2(u)du#

Now apply the half-angle identity:

#=>-1/16int1/2(1+cos(2u))dx#

#=>-1/32int(1+cos(2u))du#

Apply sum rule:

#=>-1/32int1du-1/32intcos(2u)du#

Again, you may show a substitution here, but it is not strictly necessary. You may avoid the sum rule and substitution and integrate in one step if you are comfortable doing so. I'll use #z# as a variable since we've already used #u#.

#z=2u => dz=2du =>1/2dz=du#

#=>-1/32int1du-1/32int(1/2*cos(z))du#

#=>-1/32u-1/64sin(z)#

Substitute back in for #z#

#=>-1/32u-1/64sin(2u)#

Substitute back in for #u#

#=>-1/32(2x)-1/64sin(2(2x))#

Simplify

#=>-1/16x-1/64sin(4x)#

So far we have:

#color(red)(1/8x)-1/16sin(2x)color(red)(-1/16x)-1/64sin(4x)+1/8int(cos^3(2x))dx#

We can simplify:

#=>x/16-1/16sin(2x)-1/64sin(4x)+1/8int(cos^3(2x))dx#

And now we're left to solve

#1/8int(cos^3(2x))dx#

Rewrite and apply Pythagorean identity:

#=>1/8intcos(2x)*cos^2(2x)dx#

#=>1/8intcos(2x)*(1-sin^2(2x))dx#

Apply #u# substitution:

#u=sin(2x) => du=2cos(2x)dx => 1/2du=cos(2x)#

#=>1/8int1/2(1-u^2)du#

#=>1/16int(1-u^2)du#

Integrate

#=>1/16(u-1/3u^3)#

Substitute back in for #u#:

#=>1/16(sin(2x)-1/3sin^3(2x))#

Putting it all together, we have:

#intsin^4(x)*cos^2(x)dx=x/16-1/16sin(2x)-1/64sin(4x)+1/16(sin(2x)-1/3sin^3(2x))+C#

We can simplify:

#=>x/16color(red)(-1/16sin(2x))-1/64sin(4x)+color(red)(1/16sin(2x))-1/48sin^3(2x)+C#

#=>x/16-1/64sin(4x)-1/48sin^3(2x)+C#

Our final answer is then

#x/16-sin(4x)/64-sin^3(2x)/48+C#


Sum rule:

#intf(x)+g(x)dx=intf(x)dx+intg(x)dx#

Pythagorean identity:

#sin^2(theta)+cos^2(theta)=1#

Half Angle identities:

#sin(x/2)=+-sqrt((1-cos(x))/2)#

#cos(x/2)=+-sqrt((1+cos(x))/2)#

If we square each side and double all of the angle measures, we get:

#sin^2(theta)=1/2(1-cos(2theta))#

#cos^2(theta)=1/2(1+cos(2theta))#