What is the integral of #int (sinx)/(cos^2x) dx#?
3 Answers
Mar 13, 2016
It is
Mar 17, 2016
Explanation:
We should try to use substitution by setting
This gives us the integral:
#intsinx/cos^2xdx=-int(-sinx)/cos^2xdx=-int1/u^2du=-intu^-2du#
From here, use the rule
#intu^ndu=u^(n+1)/(n+1)+C#
Thus,
#-intu^-2du=-u^(-1)/(-1)+C=1/u+C#
#=1/cosx+C=secx+C#
Mar 17, 2016
Explanation:
Alternatively, you could rewrite this in terms of other trigonometric functions:
#intsinx/cos^2xdx=int(1/cosx)(sinx/cosx)dx=intsecxtanxdx#
If you're familiar with the fact that
#intsecxtanxdx=secx+C#