What is the Integral of #tan^3(4x)#?

1 Answer

We have that # int(tan^3(4x)dx#

Let #u=4x#
so, #du/4=dx#

Substitute in the integral

#1/4int(tan^3(u))du#
#1/4int(tan^2u*tanu)du#

Use the trigonometric identity: #tan^2u=sec^2x-1 #

Hence

#1/4int(sec^2(u)-1)(tan(u))du #
#1/4int(sec^2(u)tan(u)-tan(u))du #
#1/4(int(sec^2(u)tan(u)du-int(tan(u)du)) #
For the first integral #(int(sec^2(u)tan(u))du)#:
Let #p=tan(u)#
#dp=sec^2(u)du#
so,
#int(p)dp =p^2/2+c#

For the second integral
#(int(tan(u))du) =-ln|cos(u)|+c #
put it all back in
#1/4[(p^2/2)+(ln|cos(u)|))+c #
substitute back:
#1/4(tan^2u/2+ln|cos(u)|+c #
substitute back for u:
#tan^2(4x)/8+ln|cos(4x)|/4+c#

finally

# int(tan^3(4x))dx=tan^2(4x)/8+ln|cos(4x)|/4+c#