What is the Integral of # (tan(x))^4#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Ratnaker Mehta Jan 13, 2017 #tan^3x-tanx+x+C#. Explanation: Let #I=int(tanx)^4dx=inttan^4xdx#. #:. I=inttan^2xtan^2xdx# #=inttan^2x(sec^2x-1)dx# #=inttan^2xsec^2xdx-inttan^2xdx# #=J-int(sec^2x-1)dx# #=J-intsec^2xdx+int1dx# #=J-tanx+x#, where, #J=inttan^2xsec^2xdx# To find #J," we subst. "y=tanx," so that, "dy=sec^2xdx#. #:. J=inty^2dy=y^3/3=1/3tan^3x#. Finally, we have, #I=1/3tan^3x-tanx+x+C#. Enjoy Maths.! Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 3464 views around the world You can reuse this answer Creative Commons License