What is the integral of #(x^2 +2x-1)/(x^2+9)#?

1 Answer
Mar 1, 2016

#=x+ln(x^2+9)-10/3tan^-1(x/3)+C#

Explanation:

First of all split the fraction up like so:

#(x^2+2x-1)/(x^2+9) =x^2/(x^2+9)+(2x)/(x^2+9) -1/(x^2+9)#

We can now integrate each fraction one by one, i.e:

#int(x^2+2x-1)/(x^2+9)dx =intx^2/(x^2+9)+(2x)/(x^2+9) -1/(x^2+9)dx#

We will have to do a bit of rearranging of the first fraction (add and subtract 9):

#intx^2/(x^2+9)+(2x)/(x^2+9) -1/(x^2+9)dx=#

#=int(x^2+9-9)/(x^2+9)+(2x)/(x^2+9) -1/(x^2+9)dx#

This can now be rearranged like so:

#=int(x^2+9)/(x^2+9)+(2x)/(x^2+9) -1/(x^2+9)-9/(x^2+9)dx#

#=int1+(2x)/(x^2+9) -10/(x^2+9)dx#

-The first term obviously just integrates to #x#.

-For the second term we should apply: #int(f'(x))/f(x)=ln(f(x))+C#

#int (2x)/(x^2+9)dx=ln(x^2+9)+C#

-And for the third term:

#int10/(x^2+9)dx#

Use the substitution #x=3tan(u)#
#-> dx = 3 sec^2(u)du#

We also need the trig identity: #tan^2(x)+1=sec^2(x)# Putting the substitution in:

#10int(3sec^2(u))/(9tan^2(u)+9)du=10/3intsec^2(u)/sec^2(u)du#

#=10/3intdu=10/3u+C#

Reverse the substitution and we get:

#10/3tan^-1(x/3)+C#

So returning to our original integral if apply what have found we get that:

#int(x^2+2x-1)/(x^2+9)dx=int1+(2x)/(x^2+9) -10/(x^2+9)dx#

#=x+ln(x^2+9)-10/3tan^-1(x/3)+C#