What is the limit of #(4x − sin4x)/(4x − tan4x)# as x approaches 0?
2 Answers
1
Explanation:
Calling
have
Explanation:
I'll use l'Hospital's rule.
# = lim_(xrarr0)(1-cos4x)/(1-sec^2 4x)#
The form is still
# = lim_(xrarr0)(4sin4x)/(-2sec(4x)[sec(4x)tan(4x)(4)])#
# = lim_(xrarr0)(4sin4x)/(-8sec^2(4x)tan(4x))#
# = lim_(xrarr0)(-sin4x)/(2sec^2(4x)(sin(4x))/cos(4x))#
# = lim_(xrarr0)(-1)/(2sec^3(4x))#
# = lim_(xrarr0)(-cos^3 (4x))/2 # (if you prefer)
# = -1/2#
Here is the graph:
graph{(4x-sin(4x))/(4x-tan(4x) [-4.375, 3.42, -1.795, 2.1]}