What is the polar equation with the same graph as (x+2)^2 + (y-1)^2 = 5?

1 Answer
May 22, 2018

#r=2sintheta - 4costheta#

Explanation:

This graph is a circle of radius #sqrt5# centred at #(–2, 1)#.

Converting Cartesian coordinates to polar coordinates:

#x = r cos theta#
#y = r sin theta#

So we get

#(x+2)^2 + (y-1)^2 = 5#

#(r cos theta + 2)^2 + (r sin theta - 1)^2 = 5#

#r^2 cos^2 theta + 4rcostheta+4+r^2sin^2theta-2rsintheta+1=5#

#r^2(cos^2 theta + sin^2theta)+ 4rcostheta+4-2rsintheta+1=5#

#r^2(1)+ 4rcostheta-2rsintheta=0#

#r+ 4costheta-2sintheta=0#

Solving for #r#:

#r = 2sintheta - 4costheta#
graph{(x+2)^2+(y-1)^2=5 [-10.99, 6.78, -3.19, 5.7]}