What is the polar form of #(1,18)#?

2 Answers
Jun 1, 2016

#(r,theta)=(5sqrt(13),arctan(18))#

Explanation:

Given Cartesian coordinates #(x,y)# in Quadrant I

#r=sqrt(x^2+y^2)#
and
#theta=arctan(y/x)#

Jun 1, 2016

(18, 1.5)

Explanation:

Polar format: (r, #theta#)

#r=sqrt(x^2+y^2)#

#theta = tan^-1(y/x)#

apply both formulas when going from Cartesian -> polar

#sqrt(1^2+18^2) = sqrt(325) ~~ 18.0#

#theta = tan^-1(18/1) = tan^-1(18) ~~ 1.5 radians#

Thus our answer of:

Polar format of (1,18) Cartesian is:

(18, 1.5)