What is the polar form of #(16,-4#?

1 Answer
Nov 30, 2017

#( 4sqrt(17) , -0,245 )#

Explanation:

The quickest method is to use the formula:

#(x , y ) = ( sqrt(x^2+y^2), arctan(y/x))#

Below is an alternative method.

#x=rcostheta#

#y=rsintheta#

#:.#

#16=rcostheta# [ 1 ]

#-4=rsintheta# [ 2 ]

Squaring both equations:

#256=r^2cos^2(theta)#

#16=r^2sin^2(theta)#

Adding both equations:

#272=r^2cos^2(theta)+r^2sin^2(theta)#

#272=r^2(cos^2(theta)+sin^2(theta))#

#272=r^2(1)=>r=+-sqrt(272)=+-4sqrt(17)#

We only need the positive root, negative radii can exist, and a point can be represented by many different polar coordinates, unlike Cartesian coordinates which are unique.

#theta=arctan(y/x)=arctan(-4/16)=arctan(-1/4)=-0.24498#

Polar coordinate:

#( 4sqrt(17) , -0,245 )#