What is the projection of (-i + j + k)(i+j+k) onto ( 3i + 2j - 3k)(3i+2j3k)?

1 Answer
May 8, 2018

The projection is =-2/3veci-4/9vecj+2/3veck=23i49j+23k

Explanation:

The vector projection of vecbb onto vecaa is

proj_(veca)vecb=(veca.vecb)/(|veca|)^2 vecaprojab=a.b(a)2a

Here

veca= <3,2,-3>a=<3,2,3>

vecb= <-1,1,1>b=<1,1,1>

The dot product is

veca.vecb = <3,2,-3>. <-1,1,1> = -3+2-3=-4a.b=<3,2,3>.<1,1,1>=3+23=4

The maghitude of vecaa is

|veca|=|<3,2, -3>| = sqrt(9+4+9)=sqrt18a=|<3,2,3>|=9+4+9=18

Therefore,

proj_(veca)vecb=-4/18 <3,2,-3>projab=418<3,2,3>

=-2/9 <3,2,-3>=29<3,2,3>

= <-2/3, -4/9, 2/3>=<23,49,23>

=-2/3veci-4/9vecj+2/3veck=23i49j+23k